Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
J Med Virol ; 95(4): e28687, 2023 04.
Artículo en Inglés | MEDLINE | ID: covidwho-2288701

RESUMEN

Measles virus (MeV) has been an excellent vector platform for delivering vaccines against many pathogens because of its high safety and efficacy, and induction of long-lived immunity. Early in the COVID-19 pandemic, a recombinant MeV (rMeV) expressing the prefusion full-length spike protein stabilized by two prolines (TMV-083) was developed and tested in phase 1 and 1/2 clinical trials but was discontinued because of insufficient immunogenicity and a low seroconversion rate in adults. Here, we compared the immunogenicity of rMeV expressing a soluble prefusion spike (preS) protein stabilized by two prolines (rMeV-preS-2P) with a rMeV expressing a soluble preS protein stabilized by six prolines (rMeV-preS-6P). We found that rMeV-preS-6P expressed approximately five times more preS than rMeV-preS-2P in cell culture. Importantly, rMeV-preS-6P induced 30-60 and six times more serum immunoglobulin G and neutralizing antibody than rMeV-preS-2P, respectively, in IFNAR-/- mice. IFNAR-/- mice immunized with rMeV-preS-6P were completely protected from challenge with a mouse-adapted SARS-CoV-2, whereas those immunized with rMeV-preS-2P were partially protected. In addition, hamsters immunized with rMeV-preS-6P were completely protected from the challenge with a Delta variant of SARS-CoV-2. Our results demonstrate that rMeV-preS-6P is significantly more efficacious than rMeV-preS-2P, highlighting the value of using preS-6P as the antigen for developing vaccines against SARS-CoV-2.


Asunto(s)
COVID-19 , Cricetinae , Animales , Humanos , Ratones , COVID-19/prevención & control , SARS-CoV-2/genética , Vacunas contra la COVID-19 , Pandemias , Glicoproteína de la Espiga del Coronavirus/genética , Anticuerpos Neutralizantes , Virus del Sarampión/genética , Prolina , Anticuerpos Antivirales
2.
EMBO Rep ; 24(4): e56660, 2023 04 05.
Artículo en Inglés | MEDLINE | ID: covidwho-2265979

RESUMEN

Interferon-induced transmembrane protein 3 (IFITM3) is an antiviral protein that alters cell membranes to block fusion of viruses. Conflicting reports identified opposing effects of IFITM3 on SARS-CoV-2 infection of cells, and its impact on viral pathogenesis in vivo remains unclear. Here, we show that IFITM3 knockout (KO) mice infected with SARS-CoV-2 experience extreme weight loss and lethality compared to mild infection in wild-type (WT) mice. KO mice have higher lung viral titers and increases in inflammatory cytokine levels, immune cell infiltration, and histopathology. Mechanistically, we observe disseminated viral antigen staining throughout the lung and pulmonary vasculature in KO mice, as well as increased heart infection, indicating that IFITM3 constrains dissemination of SARS-CoV-2. Global transcriptomic analysis of infected lungs shows upregulation of gene signatures associated with interferons, inflammation, and angiogenesis in KO versus WT animals, highlighting changes in lung gene expression programs that precede severe lung pathology and fatality. Our results establish IFITM3 KO mice as a new animal model for studying severe SARS-CoV-2 infection and overall demonstrate that IFITM3 is protective in SARS-CoV-2 infections in vivo.


Asunto(s)
COVID-19 , SARS-CoV-2 , Animales , Ratones , COVID-19/genética , Interferones/genética , Pulmón , Ratones Noqueados
3.
J Immunol ; 210(9): 1257-1271, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: covidwho-2280819

RESUMEN

Vaccines against SARS-CoV-2 that induce mucosal immunity capable of preventing infection and disease remain urgently needed. In this study, we demonstrate the efficacy of Bordetella colonization factor A (BcfA), a novel bacteria-derived protein adjuvant, in SARS-CoV-2 spike-based prime-pull immunizations. We show that i.m. priming of mice with an aluminum hydroxide- and BcfA-adjuvanted spike subunit vaccine, followed by a BcfA-adjuvanted mucosal booster, generated Th17-polarized CD4+ tissue-resident memory T cells and neutralizing Abs. Immunization with this heterologous vaccine prevented weight loss following challenge with mouse-adapted SARS-CoV-2 (MA10) and reduced viral replication in the respiratory tract. Histopathology showed a strong leukocyte and polymorphonuclear cell infiltrate without epithelial damage in mice immunized with BcfA-containing vaccines. Importantly, neutralizing Abs and tissue-resident memory T cells were maintained until 3 mo postbooster. Viral load in the nose of mice challenged with the MA10 virus at this time point was significantly reduced compared with naive challenged mice and mice immunized with an aluminum hydroxide-adjuvanted vaccine. We show that vaccines adjuvanted with alum and BcfA, delivered through a heterologous prime-pull regimen, provide sustained protection against SARS-CoV-2 infection.


Asunto(s)
Hidróxido de Aluminio , COVID-19 , Humanos , Animales , Ratones , Inmunidad Mucosa , Vacunas contra la COVID-19 , COVID-19/prevención & control , SARS-CoV-2 , Inmunización , Adyuvantes Inmunológicos , Anticuerpos Antivirales , Anticuerpos Neutralizantes
4.
Proc Natl Acad Sci U S A ; 119(35): e2110105119, 2022 08 30.
Artículo en Inglés | MEDLINE | ID: covidwho-2000999

RESUMEN

The spike (S) protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the main target for neutralizing antibodies (NAbs). The S protein trimer is anchored in the virion membrane in its prefusion (preS) but metastable form. The preS protein has been stabilized by introducing two or six proline substitutions, to generate stabilized, soluble 2P or HexaPro (6P) preS proteins. Currently, it is not known which form is the most immunogenic. Here, we generated recombinant vesicular stomatitis virus (rVSV) expressing preS-2P, preS-HexaPro, and native full-length S, and compared their immunogenicity in mice and hamsters. The rVSV-preS-HexaPro produced and secreted significantly more preS protein compared to rVSV-preS-2P. Importantly, rVSV-preS-HexaPro triggered significantly more preS-specific serum IgG antibody than rVSV-preS-2P in both mice and hamsters. Antibodies induced by preS-HexaPro neutralized the B.1.1.7, B.1.351, P.1, B.1.427, and B.1.617.2 variants approximately two to four times better than those induced by preS-2P. Furthermore, preS-HexaPro induced a more robust Th1-biased cellular immune response than preS-2P. A single dose (104 pfu) immunization with rVSV-preS-HexaPro and rVSV-preS-2P provided complete protection against challenge with mouse-adapted SARS-CoV-2 and B.1.617.2 variant, whereas rVSV-S only conferred partial protection. When the immunization dose was lowered to 103 pfu, rVSV-preS-HexaPro induced two- to sixfold higher antibody responses than rVSV-preS-2P in hamsters. In addition, rVSV-preS-HexaPro conferred 70% protection against lung infection whereas only 30% protection was observed in the rVSV-preS-2P. Collectively, our data demonstrate that both preS-2P and preS-HexaPro are highly efficacious but preS-HexaPro is more immunogenic and protective, highlighting the advantages of using preS-HexaPro in the next generation of SARS-CoV-2 vaccines.


Asunto(s)
Prolina , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Desarrollo de Vacunas , Estomatitis Vesicular , Vacunas Virales , Animales , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , COVID-19/genética , COVID-19/inmunología , COVID-19/prevención & control , COVID-19/virología , Vacunas contra la COVID-19/inmunología , Cricetinae , Humanos , Ratones , Prolina/inmunología , SARS-CoV-2/genética , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/inmunología , Estomatitis Vesicular/inmunología , Estomatitis Vesicular/prevención & control , Estomatitis Vesicular/virología , Vesiculovirus/inmunología , Proteínas Virales/inmunología , Vacunas Virales/inmunología
5.
Proc Natl Acad Sci U S A ; 119(33): e2201616119, 2022 08 16.
Artículo en Inglés | MEDLINE | ID: covidwho-1960617

RESUMEN

With the rapid increase in SARS-CoV-2 cases in children, a safe and effective vaccine for this population is urgently needed. The MMR (measles/mumps/rubella) vaccine has been one of the safest and most effective human vaccines used in infants and children since the 1960s. Here, we developed live attenuated recombinant mumps virus (rMuV)-based SARS-CoV-2 vaccine candidates using the MuV Jeryl Lynn (JL2) vaccine strain backbone. The soluble prefusion SARS-CoV-2 spike protein (preS) gene, stablized by two prolines (preS-2P) or six prolines (preS-6P), was inserted into the MuV genome at the P-M or F-SH gene junctions in the MuV genome. preS-6P was more efficiently expressed than preS-2P, and preS-6P expression from the P-M gene junction was more efficient than from the F-SH gene junction. In mice, the rMuV-preS-6P vaccine was more immunogenic than the rMuV-preS-2P vaccine, eliciting stronger neutralizing antibodies and mucosal immunity. Sera raised in response to the rMuV-preS-6P vaccine neutralized SARS-CoV-2 variants of concern, including the Delta variant equivalently. Intranasal and/or subcutaneous immunization of IFNAR1-/- mice and golden Syrian hamsters with the rMuV-preS-6P vaccine induced high levels of neutralizing antibodies, mucosal immunoglobulin A antibody, and T cell immune responses, and were completely protected from challenge by both SARS-CoV-2 USA-WA1/2020 and Delta variants. Therefore, rMuV-preS-6P is a highly promising COVID-19 vaccine candidate, warranting further development as a tetravalent MMR vaccine, which may include protection against SARS-CoV-2.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Vacuna contra el Sarampión-Parotiditis-Rubéola , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Eficacia de las Vacunas , Animales , Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , COVID-19/prevención & control , Vacunas contra la COVID-19/genética , Vacunas contra la COVID-19/inmunología , Inmunogenicidad Vacunal , Vacuna contra el Sarampión-Parotiditis-Rubéola/genética , Vacuna contra el Sarampión-Parotiditis-Rubéola/inmunología , Mesocricetus , Ratones , Virus de la Parotiditis/genética , Virus de la Parotiditis/inmunología , Prolina/genética , SARS-CoV-2/genética , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/inmunología , Vacunas Atenuadas/genética , Vacunas Atenuadas/inmunología
7.
Proc Natl Acad Sci U S A ; 119(21): e2202012119, 2022 05 24.
Artículo en Inglés | MEDLINE | ID: covidwho-1852638

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS­CoV-2) is a worldwide health concern, and new treatment strategies are needed. Targeting inflammatory innate immunity pathways holds therapeutic promise, but effective molecular targets remain elusive. Here, we show that human caspase-4 (CASP4) and its mouse homolog, caspase-11 (CASP11), are up-regulated in SARS­CoV-2 infections and that CASP4 expression correlates with severity of SARS­CoV-2 infection in humans. SARS­CoV-2­infected Casp11−/− mice were protected from severe weight loss and lung pathology, including blood vessel damage, compared to wild-type (WT) mice and mice lacking the caspase downstream effector gasdermin-D (Gsdmd−/−). Notably, viral titers were similar regardless of CASP11 knockout. Global transcriptomics of SARS­CoV-2­infected WT, Casp11−/−, and Gsdmd−/− lungs identified restrained expression of inflammatory molecules and altered neutrophil gene signatures in Casp11−/− mice. We confirmed that protein levels of inflammatory mediators interleukin (IL)-1ß, IL-6, and CXCL1, as well as neutrophil functions, were reduced in Casp11−/− lungs. Additionally, Casp11−/− lungs accumulated less von Willebrand factor, a marker for endothelial damage, but expressed more Kruppel-Like Factor 2, a transcription factor that maintains vascular integrity. Overall, our results demonstrate that CASP4/11 promotes detrimental SARS­CoV-2­induced inflammation and coagulopathy, largely independently of GSDMD, identifying CASP4/11 as a promising drug target for treatment and prevention of severe COVID-19.


Asunto(s)
COVID-19 , Caspasas Iniciadoras/metabolismo , SARS-CoV-2 , Tromboinflamación , Animales , COVID-19/enzimología , COVID-19/patología , Caspasas Iniciadoras/genética , Progresión de la Enfermedad , Humanos , Pulmón/patología , Ratones , Ratones Noqueados , Índice de Severidad de la Enfermedad , Tromboinflamación/enzimología , Tromboinflamación/genética
8.
J Virol ; 96(7): e0005722, 2022 04 13.
Artículo en Inglés | MEDLINE | ID: covidwho-1759284

RESUMEN

The coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has caused over 5 million deaths worldwide. Pneumonia and systemic inflammation contribute to its high mortality. Many viruses use heparan sulfate proteoglycans as coreceptors for viral entry, and heparanase (HPSE) is a known regulator of both viral entry and inflammatory cytokines. We evaluated the heparanase inhibitor Roneparstat, a modified heparin with minimum anticoagulant activity, in pathophysiology and therapy for COVID-19. We found that Roneparstat significantly decreased the infectivity of SARS-CoV-2, SARS-CoV-1, and retroviruses (human T-lymphotropic virus 1 [HTLV-1] and HIV-1) in vitro. Single-cell RNA sequencing (scRNA-seq) analysis of cells from the bronchoalveolar lavage fluid of COVID-19 patients revealed a marked increase in HPSE gene expression in CD68+ macrophages compared to healthy controls. Elevated levels of HPSE expression in macrophages correlated with the severity of COVID-19 and the expression of inflammatory cytokine genes, including IL6, TNF, IL1B, and CCL2. In line with this finding, we found a marked induction of HPSE and numerous inflammatory cytokines in human macrophages challenged with SARS-CoV-2 S1 protein. Treatment with Roneparstat significantly attenuated SARS-CoV-2 S1 protein-mediated inflammatory cytokine release from human macrophages, through disruption of NF-κB signaling. HPSE knockdown in a macrophage cell line also showed diminished inflammatory cytokine production during S1 protein challenge. Taken together, this study provides a proof of concept that heparanase is a target for SARS-CoV-2-mediated pathogenesis and that Roneparstat may serve as a dual-targeted therapy to reduce viral infection and inflammation in COVID-19. IMPORTANCE The complex pathogenesis of COVID-19 consists of two major pathological phases: an initial infection phase elicited by SARS-CoV-2 entry and replication and an inflammation phase that could lead to tissue damage, which can evolve into acute respiratory failure or even death. While the development and deployment of vaccines are ongoing, effective therapy for COVID-19 is still urgently needed. In this study, we explored HPSE blockade with Roneparstat, a phase I clinically tested HPSE inhibitor, in the context of COVID-19 pathogenesis. Treatment with Roneparstat showed wide-spectrum anti-infection activities against SARS-CoV-2, HTLV-1, and HIV-1 in vitro. In addition, HPSE blockade with Roneparstat significantly attenuated SARS-CoV-2 S1 protein-induced inflammatory cytokine release from human macrophages through disruption of NF-κB signaling. Together, this study provides a proof of principle for the use of Roneparstat as a dual-targeting therapy for COVID-19 to decrease viral infection and dampen the proinflammatory immune response mediated by macrophages.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Heparina/análogos & derivados , Línea Celular , Citocinas/metabolismo , Fenofibrato , Técnicas de Silenciamiento del Gen , Glucuronidasa/genética , Glucuronidasa/metabolismo , Heparina/uso terapéutico , Humanos , Inmunidad/efectos de los fármacos , Inflamación , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , FN-kappa B , SARS-CoV-2
9.
Comput Biol Med ; 138: 104937, 2021 11.
Artículo en Inglés | MEDLINE | ID: covidwho-1458880

RESUMEN

Recently, an outbreak of a novel coronavirus disease (COVID-19) has reached pandemic proportions, and there is an urgent need to develop nutritional supplements to assist with prevention, treatment, and recovery. In this study, SARS-CoV-2 inhibitory peptides were screened from nut proteins in silico, and binding affinities of the peptides to the SARS-CoV-2 main protease (Mpro) and the spike protein receptor-binding domain (RBD) were evaluated. Peptide NDQF from peanuts and peptide ASGCGDC from almonds were found to have a strong binding affinity for both targets of the coronavirus. The binding sites of the NDQF and ASGCGDC peptides are highly consistent with the Mpro inhibitor N3. In addition, NDQF and ASGCGDC exhibited an effective binding affinity for amino acid residues Tyr453 and Gln493 of the spike RBD. Molecular dynamics simulation further confirmed that the NDQF and ASGCGDC peptides could bind stably to the SARS-COV-2 Mpro and spike RBD. In summary, nut protein may be helpful as nutritional supplements for COVID-19 patients, and the screened peptides could be considered a potential lead compound for designing entry inhibitors against SARS-CoV-2.


Asunto(s)
COVID-19 , Proteínas de Nueces , Antivirales/farmacología , Humanos , Péptido Hidrolasas , Péptidos , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus
10.
J Virol ; 95(20): e0059221, 2021 09 27.
Artículo en Inglés | MEDLINE | ID: covidwho-1440799

RESUMEN

The current pandemic of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has led to dramatic economic and health burdens. Although the worldwide SARS-CoV-2 vaccination campaign has begun, exploration of other vaccine candidates is needed due to uncertainties with the current approved vaccines, such as durability of protection, cross-protection against variant strains, and costs of long-term production and storage. In this study, we developed a methyltransferase-defective recombinant vesicular stomatitis virus (mtdVSV)-based SARS-CoV-2 vaccine candidate. We generated mtdVSVs expressing SARS-CoV-2 full-length spike (S) protein, S1, or its receptor-binding domain (RBD). All of these recombinant viruses grew to high titers in mammalian cells despite high attenuation in cell culture. The SARS-CoV-2 S protein and its truncations were highly expressed by the mtdVSV vector. These mtdVSV-based vaccine candidates were completely attenuated in both immunocompetent and immunocompromised mice. Among these constructs, mtdVSV-S induced high levels of SARS-CoV-2-specific neutralizing antibodies (NAbs) and Th1-biased T-cell immune responses in mice. In Syrian golden hamsters, the serum levels of SARS-CoV-2-specific NAbs triggered by mtdVSV-S were higher than the levels of NAbs in convalescent plasma from recovered COVID-19 patients. In addition, hamsters immunized with mtdVSV-S were completely protected against SARS-CoV-2 replication in lung and nasal turbinate tissues, cytokine storm, and lung pathology. Collectively, our data demonstrate that mtdVSV expressing SARS-CoV-2 S protein is a safe and highly efficacious vaccine candidate against SARS-CoV-2 infection. IMPORTANCE Viral mRNA cap methyltransferase (MTase) is essential for mRNA stability, protein translation, and innate immune evasion. Thus, viral mRNA cap MTase activity is an excellent target for development of live attenuated or live vectored vaccine candidates. Here, we developed a panel of MTase-defective recombinant vesicular stomatitis virus (mtdVSV)-based SARS-CoV-2 vaccine candidates expressing full-length S, S1, or several versions of the RBD. These mtdVSV-based vaccine candidates grew to high titers in cell culture and were completely attenuated in both immunocompetent and immunocompromised mice. Among these vaccine candidates, mtdVSV-S induces high levels of SARS-CoV-2-specific neutralizing antibodies (Nabs) and Th1-biased immune responses in mice. Syrian golden hamsters immunized with mtdVSV-S triggered SARS-CoV-2-specific NAbs at higher levels than those in convalescent plasma from recovered COVID-19 patients. Furthermore, hamsters immunized with mtdVSV-S were completely protected against SARS-CoV-2 challenge. Thus, mtdVSV is a safe and highly effective vector to deliver SARS-CoV-2 vaccine.


Asunto(s)
Vacunas contra la COVID-19/inmunología , COVID-19/prevención & control , SARS-CoV-2/inmunología , Virus de la Estomatitis Vesicular Indiana/genética , Animales , Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , Encéfalo/virología , COVID-19/inmunología , Línea Celular , Síndrome de Liberación de Citoquinas/prevención & control , ARN Polimerasas Dirigidas por ADN/genética , ARN Polimerasas Dirigidas por ADN/metabolismo , Humanos , Inmunogenicidad Vacunal , Pulmón/inmunología , Pulmón/patología , Pulmón/virología , Mesocricetus , Metiltransferasas/genética , Metiltransferasas/metabolismo , Ratones , Dominios Proteicos , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/inmunología , Células TH1/inmunología , Vacunas Sintéticas/inmunología , Virus de la Estomatitis Vesicular Indiana/enzimología , Virus de la Estomatitis Vesicular Indiana/fisiología , Proteínas Virales/genética , Proteínas Virales/metabolismo , Replicación Viral
11.
Proc Natl Acad Sci U S A ; 118(34)2021 08 24.
Artículo en Inglés | MEDLINE | ID: covidwho-1345645

RESUMEN

Alum, used as an adjuvant in injected vaccines, promotes T helper 2 (Th2) and serum antibody (Ab) responses. However, it fails to induce secretory immunoglobulin (Ig) A (SIgA) in mucosal tissues and is poor in inducing Th1 and cell-mediated immunity. Alum stimulates interleukin 1 (IL-1) and the recruitment of myeloid cells, including neutrophils. We investigated whether neutrophil elastase regulates the adjuvanticity of alum, and whether a strategy targeting neutrophil elastase could improve responses to injected vaccines. Mice coadministered a pharmacological inhibitor of elastase, or lacking elastase, developed high-affinity serum IgG and IgA antibodies after immunization with alum-adsorbed protein vaccines, including the spike protein of severe acute respiratory syndrome coronavirus 2 (SARS-Cov-2). These mice also developed broader antigen-specific CD4+ T cell responses, including high Th1 and T follicular helper (Tfh) responses. Interestingly, in the absence of elastase activity, mucosal SIgA responses were induced after systemic immunization with alum as adjuvant. Importantly, lack or suppression of elastase activity enhanced the magnitude of anti-SARS-CoV-2 spike subunit 1 (S1) antibodies, and these antibodies reacted with the same epitopes of spike 1 protein as sera from COVID-19 patients. Therefore, suppression of neutrophil elastase could represent an attractive strategy for improving the efficacy of alum-based injected vaccines for the induction of broad immunity, including mucosal immunity.


Asunto(s)
Adyuvantes Inmunológicos/farmacología , Compuestos de Alumbre/farmacología , COVID-19/inmunología , COVID-19/terapia , Inhibidores Enzimáticos/farmacología , Elastasa de Leucocito/antagonistas & inhibidores , SARS-CoV-2/inmunología , Animales , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Formación de Anticuerpos/efectos de los fármacos , COVID-19/metabolismo , Células HEK293 , Humanos , Inmunidad Innata/efectos de los fármacos , Inmunidad Innata/inmunología , Inmunidad Mucosa/efectos de los fármacos , Inmunidad Mucosa/inmunología , Inmunoglobulina A/inmunología , Elastasa de Leucocito/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , SARS-CoV-2/efectos de los fármacos , Glicoproteína de la Espiga del Coronavirus/inmunología , Porcinos , Células TH1/inmunología , Tratamiento Farmacológico de COVID-19
12.
J Virol ; 94(16)2020 07 30.
Artículo en Inglés | MEDLINE | ID: covidwho-1214962

RESUMEN

The 5' cap methylation of viral RNA plays important roles in RNA stability, efficient translation, and immune evasion. Thus, RNA cap methylation is an attractive target for antiviral discovery and development of new live attenuated vaccines. For coronaviruses, RNA cap structure is first methylated at the guanine-N-7 (G-N-7) position by nonstructural protein 14 (nsp14), which facilitates and precedes the subsequent ribose 2'-O methylation by the nsp16-nsp10 complex. Using porcine epidemic diarrhea virus (PEDV), an Alphacoronavirus, as a model, we showed that G-N-7 methyltransferase (G-N-7 MTase) of PEDV nsp14 methylated RNA substrates in a sequence-unspecific manner. PEDV nsp14 can efficiently methylate RNA substrates with various lengths in both neutral and alkaline pH environments and can methylate cap analogs (GpppA and GpppG) and single-nucleotide GTP but not ATP, CTP, or UTP. Mutations to the S-adenosyl-l-methionine (SAM) binding motif in the nsp14 abolished the G-N-7 MTase activity and were lethal to PEDV. However, recombinant rPEDV-D350A with a single mutation (D350A) in nsp14, which retained 29.0% of G-N-7 MTase activity, was viable. Recombinant rPEDV-D350A formed a significantly smaller plaque and had significant defects in viral protein synthesis and viral replication in Vero CCL-81 cells and intestinal porcine epithelial cells (IPEC-DQ). Notably, rPEDV-D350A induced significantly higher expression of both type I and III interferons in IPEC-DQ cells than the parental rPEDV. Collectively, our results demonstrate that G-N-7 MTase activity of PEDV modulates viral replication, gene expression, and innate immune responses.IMPORTANCE Coronaviruses (CoVs) include a wide range of important human and animal pathogens. Examples of human CoVs include severe acute respiratory syndrome coronavirus (SARS-CoV-1), Middle East respiratory syndrome coronavirus (MERS-CoV), and the most recently emerged SARS-CoV-2. Examples of pig CoVs include porcine epidemic diarrhea virus (PEDV), porcine deltacoronavirus (PDCoV), and swine enteric alphacoronavirus (SeACoV). There are no vaccines or antiviral drugs for most of these viruses. All known CoVs encode a bifunctional nsp14 protein which possesses ExoN and guanine-N-7 methyltransferase (G-N-7 MTase) activities, responsible for replication fidelity and RNA cap G-N-7 methylation, respectively. Here, we biochemically characterized G-N-7 MTase of PEDV nsp14 and found that G-N-7 MTase-deficient PEDV was defective in replication and induced greater responses of type I and III interferons. These findings highlight that CoV G-N-7 MTase may be a novel target for rational design of live attenuated vaccines and antiviral drugs.


Asunto(s)
Exorribonucleasas/metabolismo , Interferón Tipo I/biosíntesis , Interferones/biosíntesis , Virus de la Diarrea Epidémica Porcina/fisiología , Caperuzas de ARN/metabolismo , Proteínas no Estructurales Virales/metabolismo , Animales , Sitios de Unión , Línea Celular , Chlorocebus aethiops , Exorribonucleasas/genética , Expresión Génica , Guanina/metabolismo , Inmunidad Innata , Metilación , Mutación , Virus de la Diarrea Epidémica Porcina/enzimología , Virus de la Diarrea Epidémica Porcina/genética , Virus de la Diarrea Epidémica Porcina/patogenicidad , ARN Viral/metabolismo , S-Adenosilmetionina/metabolismo , Porcinos , Células Vero , Proteínas no Estructurales Virales/genética , Replicación Viral , Interferón lambda
13.
Clin Infect Dis ; 71(16): 2132-2138, 2020 11 19.
Artículo en Inglés | MEDLINE | ID: covidwho-1153174

RESUMEN

PURPOSE: We aimed to further clarify the epidemiological and clinical characteristics of asymptomatic severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections. METHODS: We identified close contacts of confirmed coronavirus disease 2019 (COVID-19) cases in northeast Chongqing, China, who were confirmed by real-time reverse transcription polymerase chain reaction-positive (RT-PCR+). We stratified this cohort by normal vs abnormal findings on chest computed tomography (CT) and compared the strata regarding comorbidities, demographics, laboratory findings, viral transmission and other factors. RESULTS: Between January 2020 and March 2020, we identified and hospitalized 279 RT-PCR+ contacts of COVID-19 patients. 63 (23%) remained asymptomatic until discharge; 29 had abnormal and 34 had normal chest CT findings. The mean cohort age was 39.3 years, and 87.3% had no comorbidities. Mean time to diagnosis after close contact with a COVID-19 index patient was 16.0 days, and it was 13.4 days and 18.7 days for those with abnormal and normal CT findings, respectively (P < .05). Nine patients (14.3%) transmitted the virus to others; 4 and 5 were in the abnormal and normal CT strata, respectively. The median length of time for nucleic acid to turn negative was 13 days compared with 10.4 days in those with normal chest CT scans (P < .05). CONCLUSIONS: A portion of asymptomatic individuals were capable of transmitting the virus to others. Given the frequency and potential infectiousness of asymptomatic infections, testing of traced contacts is essential. Studies of the impact of treatment of asymptomatic RT-PCR+ individuals on disease progression and transmission should be undertaken.


Asunto(s)
COVID-19/epidemiología , SARS-CoV-2/patogenicidad , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , China/epidemiología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Pandemias , Reacción en Cadena en Tiempo Real de la Polimerasa , Estudios Retrospectivos , Adulto Joven
14.
Proc Natl Acad Sci U S A ; 118(12)2021 03 23.
Artículo en Inglés | MEDLINE | ID: covidwho-1125668

RESUMEN

The current pandemic of COVID-19 caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) highlights an urgent need to develop a safe, efficacious, and durable vaccine. Using a measles virus (rMeV) vaccine strain as the backbone, we developed a series of recombinant attenuated vaccine candidates expressing various forms of the SARS-CoV-2 spike (S) protein and its receptor binding domain (RBD) and evaluated their efficacy in cotton rat, IFNAR-/-mice, IFNAR-/--hCD46 mice, and golden Syrian hamsters. We found that rMeV expressing stabilized prefusion S protein (rMeV-preS) was more potent in inducing SARS-CoV-2-specific neutralizing antibodies than rMeV expressing full-length S protein (rMeV-S), while the rMeVs expressing different lengths of RBD (rMeV-RBD) were the least potent. Animals immunized with rMeV-preS produced higher levels of neutralizing antibody than found in convalescent sera from COVID-19 patients and a strong Th1-biased T cell response. The rMeV-preS also provided complete protection of hamsters from challenge with SARS-CoV-2, preventing replication in lungs and nasal turbinates, body weight loss, cytokine storm, and lung pathology. These data demonstrate that rMeV-preS is a safe and highly efficacious vaccine candidate, supporting its further development as a SARS-CoV-2 vaccine.


Asunto(s)
Vacunas contra la COVID-19/inmunología , COVID-19/prevención & control , Vectores Genéticos , Virus del Sarampión , Glicoproteína de la Espiga del Coronavirus/inmunología , Vacunas Sintéticas/inmunología , Animales , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , COVID-19/complicaciones , COVID-19/patología , Vacunas contra la COVID-19/genética , Cricetinae , Modelos Animales de Enfermedad , Expresión Génica , Vectores Genéticos/genética , Vectores Genéticos/inmunología , Humanos , Inmunización , Inmunogenicidad Vacunal , Virus del Sarampión/genética , Virus del Sarampión/inmunología , Ratones , Ratones Transgénicos , Ratas , Glicoproteína de la Espiga del Coronavirus/genética , Vacunas Sintéticas/genética
15.
Bioconjug Chem ; 32(1): 215-223, 2021 01 20.
Artículo en Inglés | MEDLINE | ID: covidwho-997757

RESUMEN

Severe acute respiratory syndrome coronavirus (SARS-CoV)-2 is a novel and highly pathogenic coronavirus and is the causative agent of the coronavirus disease 2019 (COVID-19). The high morbidity and mortality associated with COVID-19 and the lack of an approved drug or vaccine for SARS-CoV-2 underscores the urgent need for developing effective antiviral therapies. Therapeutics that target essential viral proteins are effective at controlling virus replication and spread. Coronavirus Spike glycoproteins mediate viral entry and fusion with the host cell, and thus are essential for viral replication. To enter host cells, the Spike proteins of SARS-CoV-2 and related coronavirus, SARS-CoV, bind the host angiotensin-converting enzyme 2 (ACE2) receptor through their receptor binding domains (RBDs). Here, we rationally designed a panel of ACE2-derived peptides based on the RBD-ACE2 binding interfaces of SARS-CoV-2 and SARS-CoV. Using SARS-CoV-2 and SARS-CoV Spike-pseudotyped viruses, we found that a subset of peptides inhibits Spike-mediated infection with IC50 values in the low millimolar range. We identified two peptides that bound Spike RBD in affinity precipitation assays and inhibited infection with genuine SARS-CoV-2. Moreover, these peptides inhibited the replication of a common cold causing coronavirus, which also uses ACE2 as its entry receptor. Results from the infection experiments and modeling of the peptides with Spike RBD identified a 6-amino-acid (Glu37-Gln42) ACE2 motif that is important for SARS-CoV-2 inhibition. Our work demonstrates the feasibility of inhibiting SARS-CoV-2 with peptide-based inhibitors. These findings will allow for the successful development of engineered peptides and peptidomimetic-based compounds for the treatment of COVID-19.


Asunto(s)
Enzima Convertidora de Angiotensina 2/química , Antivirales/farmacología , Diseño de Fármacos , Fragmentos de Péptidos/farmacología , SARS-CoV-2/efectos de los fármacos , Antivirales/metabolismo , Células HEK293 , Humanos , Simulación del Acoplamiento Molecular , Fragmentos de Péptidos/metabolismo , Conformación Proteica , SARS-CoV-2/metabolismo , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/metabolismo
16.
Journal of Food Science and Technology ; 38(4):54-62, 2020.
Artículo en Chino | CAB Abstracts | ID: covidwho-914598

RESUMEN

In order to screen bioactive peptides against SARS-CoV-2 from food raw materials, Mizuhopecten yessoensis myosin was selected as the target sequence, which was enzymatically digested in silico, and then the toxicity and bioactivity of the peptides were predicted. The non-toxicity peptides with activity scores exceeding 0.5 were selected, and SARS-CoV-S/ACE2 complex protein and COVID-19 Mpro hydrolase were selected as targets for molecular docking to identify their viral resistance. The molecular docking results showed that the peptide CSNAIPEL could bind to the two key amino acids GLN42 and GLU329 on the SARS-CoV-S/ACE2 complex protein, and the LibDock Score was 136.03. LPIY could not only combine with ASP38 and TYR491 on the SARS-CoV-S/ACE2 complex protein, but also potentially combine with THR24, THR25 and THR26 on COVID-19 Mpro, and the LibDock Score was 142.85 and 168.04 respectively. QRPR combined with THR24, THR25 and THR26 on the COVID-19 Mpro hydrolase crystal, and the LibDock Score was 154.93. In summary, peptides CSNAIPEL, LPIY and QRPR exhibited well anti-SARS-CoV-2 capability. This study could provide novel ideas for the development of new function foods of anti-SARS-CoV-2 in the future.

17.
Food Chem ; 342: 128366, 2021 Apr 16.
Artículo en Inglés | MEDLINE | ID: covidwho-856702

RESUMEN

The present study aimed to identify potential SARS-CoV-2 inhibitory peptides from tuna protein by virtual screening. The molecular docking was performed to elicit the interaction mechanism between targets (Mpro and ACE2) and peptides. As a result, a potential antiviral peptide EEAGGATAAQIEM (E-M) was identified. Molecular docking analysis revealed that E-M could interact with residues Thr190, Thr25, Thr26, Ala191, Leu50, Met165, Gln189, Glu166, His164, His41, Cys145, Gly143, and Asn119 of Mpro via 11 conventional hydrogen bonds, 9 carbon hydrogen bonds, and one alkyl interaction. The formation of hydrogen bonds between peptide E-M and the residues Gly143 and Gln189 of Mpro may play important roles in inhibiting the activity of Mpro. Besides, E-M could bind with the residues His34, Phe28, Thr27, Ala36, Asp355, Glu37, Gln24, Ser19, Tyr83, and Tyr41 of ACE2. Hydrogen bonds and electrostatic interactions may play vital roles in blocking the receptor ACE2 binding with SARS-CoV-2.


Asunto(s)
Antivirales/farmacología , COVID-19/virología , Proteínas de Peces/química , Péptidos/farmacología , SARS-CoV-2/efectos de los fármacos , Atún , Animales , Antivirales/química , Sitios de Unión , Humanos , Enlace de Hidrógeno , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Péptidos/química , Unión Proteica
19.
BMC Infect Dis ; 20(1): 429, 2020 Jun 19.
Artículo en Inglés | MEDLINE | ID: covidwho-608211

RESUMEN

BACKGROUND: Since December 2019, over 80,000 patients with coronavirus disease 2019 (COVID-19) have been confirmed in China. With the increasing number of recovered patients, more attention should be paid to the follow-up of these patients. METHODS: In the study, 576 patients with COVID-19 discharged from hospital in Chongqing, China from January 24, 2020, to March 10, 2020 were evaluated by viral nucleic acid tests for severe acute respiratory syndrome coronavirus 2(SARS-CoV-2) to determine if they could be released from quarantine. Among the 576 patients, 61 patients (10.6%) had positive RT-PCR test results of SARS-CoV-2. We aimed to analyze the demographics, clinical characteristics and treatment of 61 patients. RESULTS: These positive patients were characterized by older age, chronic medical illness and mild conditions. 38 (62.3%) patients who were asymptomatic without abnormalities on chest radiographs were found in the positive with COVID-19. Also, they showed positive results of stool or sputum specimens with negative results of nasal and pharyngeal swab specimens. The median duration of positive result of SARS-CoV-2 was varied from 3 days to 35 days in the patients discharged from hospital with no family member infection. CONCLUSIONS: Multi-site screening of SARS-CoV-2 including nasal and pharyngeal swabs, stool and sputum specimens could be considered to improve the diagnosis, treatment and infection control in patients with COVID-19. Our findings provide the important information and clinical evidence for the improved management of patients recovered from COVID-19.


Asunto(s)
Infecciones por Coronavirus/diagnóstico , Alta del Paciente , Neumonía Viral/diagnóstico , Adulto , Anciano , Betacoronavirus , COVID-19 , Prueba de COVID-19 , China , Técnicas de Laboratorio Clínico , Heces/virología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Nariz/virología , Pandemias , Faringe/virología , ARN Viral/aislamiento & purificación , SARS-CoV-2 , Esputo/virología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA